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Formation of microdomain structures in concentrated systems of irregular �stochastic� copolymers with
weak composition asymmetry ���1� is considered theoretically. The study is focused on the weak segregation
regime for infinitely long copolymer chains near the disorder-to-order transition. It is shown that the transition
occurs below the spinodal �at �0��*� and that it results in the formation of micelles rather than in a super-
position pattern of a few harmonic composition waves. The micelle size is inversely proportional to ��=�
−�0. For small �� the micelles are like large nearly uniform droplets with “reflected” composition, −�. As ��
increases the micelle composition profile develops oscillations. A first-order transition from spherical-wave
micelles to micelles with internal bcc structure is predicted at � /�*−1��2. Interaction of micelles is also
considered. It is shown that micelles always tend to form a fcc superlattice. The micellization in the weak
segregation regime is controlled by the so-called nonlocal free energy. The classical fourth order �in compo-
sition parameter A� approximation for this energy is significantly generalized in the regime of low volume
fraction of micelles. It is shown that the nonlocal energy strongly �exponentially� increases with A near and
above a certain critical value A�A*.
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I. INTRODUCTION

Microdomain structures in irregular �AB� multiblock co-
polymers have attracted much attention recently �1–17�.
These structures are normally described in terms of the “or-
der parameter” field ��r�, the local composition excess. An
incompatibility of A and B blocks �quantified by the Flory
interaction parameter �� serves as the driving force for do-
main formation.

An irregular �statistical� copolymer involves a lot of dif-
ferent chemical sequences, i.e., a mixture of a huge number
of components. This multicomponent nature of the system is
reflected in the so-called nonlocal contribution to its free
energy if its macroscopic state is defined by just one field
��r� and the sequence disorder is quenched. On the theoret-
ical side the crucial point was made in 1989 by Shakhnovich
and Gutin �1� who calculated the nonlocal free energy by
perturbations for small �

Fnloc � C�
q,q�

��q�2��q��
2

q2 + q�2 �1�

where �q=���r�e−iq·rd3r ,�q,q�	� d3q
�2	�3

d3q�
�2	�3 , and C is a con-

stant. Equation �1� is valid for very long copolymer chains:
Their Gaussian size must be much larger than 1/q. Micro-
domain superstructure formation in melts of nearly symmet-
ric random �block� copolymers was originally predicted
�1,7,11� as a continuous disorder-to-order transition �DOT� at
some �=�*. These theories were hinged on the fourth-order
approximation for the nonlocal free energy, Eq. �1�. Just
above �* the structure was characterized by a superposition
of a number of weak harmonic waves �
A�se

iqs·r , �qs � =q*.

The amplitude A is vanishing and 1/q* is formally diverging
at the transition point. Later on it was shown �9,12,13� that a
phase separation �disordered/ordered phases� is more favor-
able than homogeneous domain formation. Hence a discon-
tinuous disorder-to-order transition was predicted.

These predictions have been further challenged recently.
It was shown that a regular array of ordered regions �i.e., a
secondary domain superstructure� is more favorable than two
macroscopic coexisting phases �disordered and ordered�
�10,14,15�. It was argued that Eq. �1� is not accurate enough,
so that the secondary superstructure cannot be established
using this expression for the nonlocal free energy: It is nec-
essary to take into account higher-order terms �up to �8�.
Hence an alternative approach �involving two order param-
eters� was developed in Refs. �14,15�.

Unfortunately the two-parameter approach also becomes
insufficient very close to the DOT where the sizes of primary
and secondary domains are comparable. It is this regime that
is studied in the present paper. In the next section we de-
scribe the model, underline the importance of the nonlocal
free energy, and show that micelle formation should be an-
ticipated near the DOT. Equation �1� is generalized in Sec.
III. An asymptotically exact expression for the nonlocal en-
ergy valid for small concentration of micelles is obtained
there. In Sec. IV the non-local energy is further generalized
to the strongly non-linear regimes where the inhomogeneous
composition field induces a significant “fractionation” of co-
polymer sequences. The results are applied to investigate
micelle/superstructure formation in random copolymers near
DOT �Sec. V�.

II. MODEL

Let us consider a melt or a concentrated solution of AB
copolymers. We assume that the polymer system is incom-
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pressible, i.e., that the total concentration of A and B units is
constant
c0

1

cA�r� + cB�r� = c0. �2�

Here cA�r� is local number concentration of A units at posi-
tion r. For simplicity we assume that A and B monomer
volumes are equal: �A=�B. The gross mean fraction of A
units is 1 /2+�. An inhomogeneous state of the system can be
characterized by the composition field

��r� = ��1/2 − ��cA�r� − �1/2 + ��cB�r��/c0. �3�

Obviously � can vary between −1/2−� and 1/2−�. In the
uniform system �=0.

Each copolymer is a long chain or A and B units. The
chemical sequence of each chain is quenched; it can be rep-
resented by a sequence of “spins” ��n, n=1,2 , . . . ,N, where
�n=1/2−� if nth unit of the chain is A, and �n=−1/2−�
otherwise. We consider the case of uniformly stochastic se-
quences with local correlations: It is assumed that sequences
of different chains are independent and that the same is true
for distant enough fragments of the same chain �locality�. All
copolymer fragments of a given length are characterized by
the same sequence distribution �uniformity�. The correlation
function of spins on the same chain

��n�n�� = C��n − n�� �4�

depends only on the number of units between n and n�. Ob-
viously C��0�=1/4−�2. The results considered in this paper
are rather universal, they are not sensitive to the details of
spin correlations. The essential parameter is

�
−



C��n�dn 	 K0 = �1/4 − �2�m .

The parameter m defines the range of spin correlations. We
assume that m�1, i.e., random multi-block copolymer se-
quences; the typical block length is m. For the correlated
random copolymers which have been studied in some detail
theoretically �11,15� the spin correlation function is C��n�
= �1/4−�2�e−2�n�/m.

Formation of positional structures in the copolymer sys-
tems is driven by incompatibility of A and B components
which are necessarily mixed to some degree due to copoly-
mer primary structure. The excess energy of mixing in the
Flory-Huggins approximation is

Fint =
�

c0
� cA�r�cB�r�d3r ,

where � is the effective energy cost for each contact between
A and B units �the thermal energy kBT is treated as the en-
ergy unit here and below�. This free energy can be rewritten
as

Fint = const − �c0� �2�r�d3r . �5�

The above expression can be validated on the more general
grounds: It can be obtained by expanding Fint as a series in
��r� and truncating the expansion after the quadratic term. In
addition we neglect the wavelength dependence of the vertex
function in the quadratic term. The first approximation is
justified if � is small enough, the second—if the range of AB
interactions is short enough as compared with the character-
istic length scale of the domain structure. A further discus-
sion of the approximation, Eq. �5�, is not appropriate here for
two reasons: �i� the Flory-Huggins model is standard and is
largely adopted in theoretical studies; �ii� this paper is fo-
cused on the effects driven by the nonlocal free energy to
which Fint does not contribute. Generally, corrections to the
approximation, Eq. �5�, just lead to some renormalizations of
the parameters involved in the local free energy.

The Flory parameter � depends on temperature, concen-
tration c0, solvent quality �which can be tuned, for example,
by using mixed solvents�, and on other physical and chemi-
cal conditions in the solution �for example, on ionic strength
if charges are involved in polymer chains�. The system is
homogeneous �disordered� at low �’s. An inhomogeneous
structure is formed above certain threshold �0. This transi-
tion is weak �close to second order� if composition is sym-
metric, �=0, and m�1. It is the vicinity of the critical point
�=0,�=�* �the spinodal �* is defined below� that attracted
most of the theoretical interest �2,10,12–17�. This study is
also focused on the critical region which is interesting for
two reasons: �i� � is small hence � expansions are useful
there; �ii� almost all qualitatively different microdomain
structures are competitive in this regime, some structural fea-
tures can be even more pronounced there �for example, the
difference between primary and secondary domain sizes�
�15�.

The free energy F=F���r�� for a given order parameter
field ��r� is a sum of two terms, local and nonlocal
�1,5,7,9,15� �for simplicity we set F=0 in the reference ho-
mogeneous state�

F = Floc + Fnloc.

The local free energy Floc can be represented as an integral of
energy density

Floc =� f locd
3r .

Floc is equal to the free energy of the corresponding annealed
copolymer system which is characterized by the same se-
quence statistics in the disordered state �i.e., the sequence
statistical properties of the homogeneous annealed system
are identical to those of the quenched system�. In the critical
region �where the typical � is small� it is enough to expand
f loc as a series in � neglecting the terms of higher than fourth
order �in � ,��

1See Ref. �21� for clarifications as to why the compressibility of a
concentrated �or even semidilute� copolymer solution �in a good
solvent� can be neglected as long as microphase separation is con-
cerned.

A. N. SEMENOV PHYSICAL REVIEW E 73, 041803 �2006�

041803-2



f loc �
�2

2
�2 +

�2�

2
����2 +

�3

3!
�3 +

�4

4!
�4.

For symmetric blockcopolymers with A and B blocks char-
acterized by the same statistical segments b, we get �5,7–9�

�2 =
c0

K0
− 2c0�, �2� 
 c0b2, �4 


c0

m
, �3 � ��4.

Thus �2=2c0��*−��, where the critical Flory parameter cor-
responding to the spinodal is �*= 1

2K0
= 1

2�1/4−�2�m ;�*� 2
m since

��1. The local free energy can be rewritten as

f loc �
c0

m
�− 2��2 + l2����2 + 4��4�

3 + �4�
4 , �6�

where �= �

�* −1= �m
2 −1, l2=

�2�m

2c0
,�4=

�4m

24c0
. Normally l is 
 the

block Gaussian size, l
m1/2b, and �4
1. For example, for
correlated random copolymers �11,15�

l2 � mb2/6, �4 � 2.

The nonlocal free energy can be also expanded as the
order parameter series. The main term �of the fourth order�
was calculated by Shakhnovich and Gutin, Eq. �1�, where the
constant

C =
6c0

2Vb2K0
2 �

c0

m2

48

Vb2 . �7�

Microdomain formation in statistical block copolymers in a
near-critical regime was considered in Refs. �9,12,13,15�.
The system is disordered for ��0. For 0���10.2� it
shows complicated microdomain structures characterized by
two significantly different length scales �15�. For example, at
�=1.1� the predicted structure involves layers of thickness
�
 l /�. The layers alternatively are either homogeneous, or
are characterized by an internal �primary� composition pat-
tern of body centred cubic �bcc� symmetry. The characteristic
length scale of the primary pattern L
 l /�1/2 is much shorter
than the thickness of secondary layers �. Similar secondary
structures are predicted for higher �’s, involving patterns
with different symmetries, other than bcc �see Ref. �15� for
more details�.

The picture outlined above implies that at small �’s the
mean-square amplitude of the composition field ��2�
�2.
The system is homogeneous �disordered� at �=0. A closer
analysis shows however that these features cannot be true. In
fact, consider the following structure at �=0: Droplets of size
Rd occupying a small fraction p	cdVd of the total volume,
where cd is the concentration of droplets, Vd= 4	

3 Rd
3, the drop-

let volume. The typical distance between the droplets is
much larger than Rd since p�1. The composition field
��r�
−A inside the droplets, and �= pA in the nearly homo-
geneous matrix outside.

Calculating the free energy �f� per unit volume of the
system using Eqs. �1�, �6�, and �7� and neglecting numerical
constants we get

m

c0
f 
 p�A2l2

Rd
2 − �A3 + A4� + p2Rd

2 A4,

where the terms in brackets correspond to the last three terms
in Eq. �6�, and the last p2 term represents the nonlocal en-
ergy. Minimization of f with respect to p, Rd ,A results in

p 
 �2, Rd 
 l/�, A 
 �, f 
 −
c0

m
�6. �8�

Thus the system is not homogeneous at �=0: Formation of
droplets of finite size �i.e., micelles� is favorable since f�0.

Formation of micelles is driven by the cubic ��3� term in
the local free energy. This is an essential feature of this re-
gime: In all the regimes theoretically considered for statisti-
cal copolymers so far the local cubic term was always sub-
dominant, i.e., it could not possibly drive a structure
formation.

On the other hand there is some analogy between the
micelle formation and the classical phase separation in a bi-
nary system: The latter is also driven by the cubic term �apart
from the special case at the critical point�. The argument
above shows that micelle formation takes place at some �
�0. This point can be associated with the binodal of a binary
system, whereas �=0 is the spinodal. I stress, however, that
this analogy does not buy much, as it completely misses the
main character in statistical copolymer play, namely, the non-
local free energy that largely defines the micelle size, and the
intra- and inter-micelle structure.

An important question is whether the free energy expres-
sions considered above are valid in the regime of micelles.
There is no problem regarding the local energy expansion,
Eq. �6�, which is valid since �� ��1,Rd� l. The validity of
the �4 approximation for the nonlocal energy �Eq. �1�� was
analyzed in Refs. �10,14�: It is applicable if the composition
contrast A is much smaller than the standard deviation of the
mean composition of the characteristic chain fragment of
size Rd �i.e., copolymer blob of size 
 typical length scale of
the structure�, i.e., if ARd / l�1. Using Eqs. �8� we find:
ARd / l
1 which corresponds to the onset of the regime of
significantly perturbed blobs �cf. Ref. �10��. Hence �4 ap-
proximation for nonlocal energy is not applicable here:
Higher-order terms are non-negligible for Fnloc. Below we
show however that the problem is still tractable: In the next
section we obtain Fnloc without resorting to an �-expansion.

The effect of order parameter fluctuations on phase be-
havior of random copolymers was analyzed in Refs.
�2,3,12,13�. The fluctuations are important near the critical
point �� �� m̄−1/4, where m̄=mb6c0

2. Below we neglect fluc-
tuations and analyze the mean-field near-critical regime
1� �� �� m̄−1/4.

III. NONLOCAL FREE ENERGY FOR LOW FRACTION
OF MICELLES p™1

A. Formal general derivation

We first note that nonlocal free energy Fnloc=Fnloc��� has
nothing to do with interactions of A and B units, therefore it
is sufficient to analyze an ideal system of noninteracting co-
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polymers: Fid���=Floc
id ���+Fnloc���, where “id” stands for

“ideal system.” The local energy Floc
id , i.e., the free energy of

the corresponding annealed copolymer system, can be found
using the classical Lifshitz approach �18�.

First, a formal external potential field is applied; the cor-
responding total potential energy is

FU 	� �cA�r�UA�r� + cB�r�UB�r��d3r

where UA,UB are the potential energies of A, B units, re-
spectively. Then the total free energy in the presence of the

field F̃loc�UA,UB�, is defined. The required free energy

Floc
id ��� is then defined as F̃loc–FU provided that UA,UB are

appropriately chosen �the time-averaged distributions of A
and B units in the presence of the fields must satisfy Eqs. �2�
and �3��.

On the other hand, we note that F̃loc�UA,UB�=NFann,
where N is the number of copolymer chains in the system,
and Fann is the free energy of a single annealed copolymer
chain in the presence of the fields UA,B �19�

Fann = − ln�Z�seq

where Z=Z�UA,UB,seq� is the corresponding single-chain
partition function, seq= ��1 ,�2 , . . . ,  stands for copolymer
sequence, and �·�seq=�seq ·�0�seq� means averaging over the
a priori sequence distribution �0�seq�. For weak and smooth
enough external fields �inducing weak order parameter �� �
�1 with large characteristic length �� l� the sequence-
averaged partition function �Z�seq is nearly equal to the par-
tition function of a homopolymer chain in the potential field
U*=U− 1

2K0�
2 �cf. Ref. �1��, where U=U�r� and �=��r� are

related to UA,B

UA = U + �1/2 − ���, UB = U − �1/2 + ��� . �9�

The condition cA+cB=c0 implies that U*=const �=0 for sim-
plicity�, therefore �Z�seq=V �V is the total volume of the sys-
tem�, Fann= –ln V, and

FU = c0� �U + ���d3r = c0� �1

2
K0�

2�r� + ���d3r .

Taking also into account that �Floc
id /��=−c0�, where �

��
means variational derivative, we get

Floc
id = F̃loc − FU �

c0

2K0
� �2d3r .

Here we omitted the trivial ideal-gas term −N ln V which is
negligible in the limit of very long chains. Note that higher-
order terms in � are small since ��1; these terms are ne-
glected here as well.

The same approach can be formally used to obtain the
total free energy Fid. The only difference is that equation

F̃loc=−N ln �Z�seq must be replaced by �1,19�

F̃ = − N�ln Z�seq.

Let us consider Fnloc as a small correction. In this case we
can use the theorem on small variations �20� and approxi-

mate Fnloc=Fid−Floc
id by F̃− F̃loc

Fnloc � N�ln �Z�seq − �ln Z�seq� , �10�

where Z in both terms must be calculated for the same
UA,UB defined in Eqs. �9� with U=U�0� and �=��0�

U�0� =
1

2
K0�

2, ��0� = − �/K0.

This approximation is valid if the differences ��=�−��0�

and �U=U−U�0� between the actual �=���� ,U=U��� and
the approximate potentials defined above are negligible. In
effect this means that the nonlocal correction �E to the en-
ergy of interaction between a micelle �droplet� and a copoly-
mer chain overlapping it is small: �E�kBT. The magnitude
of �E can be estimated as �E
gd�U, where gd
Rd

2 /b2 is
the number of units in a chain fragment �blob� overlapping
the droplet. Further, inside the droplet �U
K0���
A��

and ��=− 1
c0

�Fnloc���

�� , i.e., ��

Fnloc

Ac0Vd
. Thus we arrive at the

condition

Fnloc/�c0Rdb2� � 1. �11�

Analytical calculation of �ln Z�seq is not possible in the
general case. However the problem can be solved for a struc-
ture involving localized inhomogeneities �micelles� in an
otherwise nearly homogeneous matrix when the micelle vol-
ume fraction p is small, p�1. In this case both fields U and
� �or UA,UB� are localized near the micelles, and the prob-
ability that a copolymer chain “feels” these fields is propor-
tional to p. Therefore we can formally write Z=V�1+W�,
where W is proportional to p. Thus W can be formally con-
sidered as a small parameter. Expanding the r.h.s. of Eq. �10�
as a series in W and neglecting cubic and higher-order terms
we get

Fnloc �
N
2

�W2�seq =
N
2

�V−2�Z2�seq − 1� , �12�

where it is taken into account that �Z�seq=V. The partition
function is

Z =� P0�r�exp�− �
n=1

N

�U�rn� + ��rn��n��D�r� ,

where P0�r� is the a priori probability of a given copolymer
chain conformation �r�= �r1 ,r2¯ , and D�r�=d3r1d3r2¯

Taking into account that �n��rn��n is a random variable with
nearly Gaussian distribution since it is a superposition of
many independent terms involving spins �n from different
blocks �recall that the field ��r� is nearly constant on the
length-scale l since l�Rd�, we obtain

Fnloc �
1

2

N
V2 � P0�r�P0�r���eK0�n

��rn���rn�� − 1�D�r�D�r�� .

The integral above �apart from “−1” in square brackets� is
formally the partition function of a Gaussian chain in six
dimensions in the presence of the external field −u�r ,r��=
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−K0��r���r��. Using the Lifshitz formalism �18� we simplify
it as

Fnloc �
N

2V2 � d3rd3r����r,r�;N� − 1� , �13�

where N is the number of units in one copolymer chain, and
the function ��r ,r� ;n� satisfies the following equations:

��

�n
= a2�6

2� + u�r,r��� �14�

u�r,r�� = ��r���r��/K0, �0�r,r�� = 1. �15�

Here �6
2	� �

�r
�2+ � �

�r�
�2 , a2	b2 /6.

Taking into account that 1
V2 ��6

2�d3rd3r�→0 for V→
and that �u�r ,r��d3rd3r�=0 �the first equation follows from
the Gaussian theorem, the second—from the definition of
��r�, Eq. �3��, we find

Fnloc �
N

2V2�
0

N

dn� d3rd3r�u�r,r����r,r�;n� . �16�

This equation is valid if all lengthscales ��� involved in ��r�
are long enough: �� l.

B. Order parameter expansion of the nonlocal energy

1. Fourth order

Let us apply the obtained result Eq. �16� in the regime of
weak composition inhomogeneity �2Rd

2 / l2�1. The potential
well u�r ,r�� is shallow in this case: �u � 
 �2

m �
b2

Rd
2 , so that the

Laplacian term in Eq. �14� would be dominant if ��2�� were

� /Rd

2. Therefore �=1+�� , ��� ��1. Doing Fourier
transformation �r ,r��→ �q ,q��	Q in Eq. �16� we find

Fnloc �
N2

2V2�
0

N

dn�
Q

u−Q��Q,

where ��Q�n� ,uQ are Fourier transforms of
���r ,r� ;n� , u�r ,r��, respectively, and �Q=�d3qd3q� / �2	�6.
Considering the second term in Eq. �14�, u��u, as a per-
turbation, we get

��Q�n� �
uQ

Q2a2 �1 − e−Q2na2
�

and

Fnloc
�4� �

c0N

4V
�

Q

fD�Q2RN
2 ��uQ�2

=
c0

4VK0
2�

q,q�
Sh��q2 + q�2�

���q�2��q��
2, �17�

where fD�t�= 2
t2 �t−1+e−t� is the Debye function, RN=N1/2a is

the Gaussian gyration radius of copolymer chains, Sh�q�
�NfD�qRN� is the form factor of the corresponding ho-

mopolymer, �q is Fourier transform of ��r�. This result Eq.
�17� is in agreement with the nonlocal free energy obtained
in Ref. �5�. For long chains RN�Rd ,qRN is typically large
qRN�1, so Eq. �17� reduces to the original result of Shakh-
novich and Gutin, Eq. �1�.

2. Eighth order

For small � the nonlocal energy can be expanded as a
series of order parameter. Equation �17� shows the main
fourth-order term. Let us calculate other terms up to the
eighth order. For simplicity we consider only the most im-
portant case when �q is peaked near �q � =q*, i.e., �q is neg-
ligible if �q−q* ���q, with �q�q*. In addition we assume
that q*RN�1 �long enough copolymer chains�. In analogy
with the fourth-order calculation we write �=1+��, and
solve Eq. �14� by perturbations in ��. The result is �only the
dominant terms for small 1

q*2RN
2 and �q /q* are kept�

Fnloc �
c0

2V��Q

�uQ�2

Q2a2 + �
Q,Q�

u−QuQ−Q�uQ�

Q2Q�2a4

+ k2�
Q

��u2�Q�2

Q2a2 �1 −
1 − e−Na2Q2

Na2Q2 �� , �18�

where �u2�Q is Fourier transform of u�r ,r��2, and k= 1
2q*2a2 .

The second term in curly brackets is of sixth order in the
order parameter field ��r�; this term is identical �apart from
notation differences� to the “additional” nonlocal term re-
ported in Ref. �16�.2 It is noteworthy that Q2�Q�2�2q*2 in
the first and second terms in curly brackets. So the last equa-
tion can be simplified as

Fnloc �
c0

2K0
2V
�k�� ��r�2d3r�2

+
k2

K0
�� ��r�3d3r�2�

+ Fnloc
�8� , �19�

Fnloc
�8� �

k2

2K0
2�

q,q�
Sh��q2 + q�2����2�q�2���2�q��

2, �20�

where ��2�q is Fourier transform of ��r�2. The �8 term Eq.
�20� generalizes the nonlocal free energy of secondary struc-
tures calculated in Ref. �15� using a different approach. The
latter result was restricted to the regime �qRN�1; in this
regime the �8 term Eq. �20� becomes

Fnloc
�8� �

c0

2K0
2a2V

�
q,q�

1

q2 + q�2 ��̃q�2��̃q��
2, �21�

where �̃�r�= 1
�2q*aK0

1/2��r�2 is the second order parameter.
Equation �21� agrees with the right-hand side �r.h.s.� of Eq.
�27� in Ref. �15� for K0=m /4 corresponding to the correlated
random copolymers considered there �note a different pref-
actor in the definition of the second-order parameter in Ref.
�15��.

2Note that Ref. �16� was submitted one half-year later than the
present paper.
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Thus the general nonlocal energy Eq. �16� includes in a
natural way the �4 and �8 nonlocal terms considered earlier:
The two terms Fnloc

�4� and Fnloc
�8� may be viewed as nonlocal free

energies of the primary and secondary structures, respec-
tively. This point of view is clarified and generalized in Ap-
pendix A.

The general expression Eq. �16� of course includes other
orders of �: In a sense it solves the problem of summation of
the infinite series in �. The behavior of Fnloc with increasing
� is analyzed in the next section.

C. Long chain limit

Let us consider the most important case of periodically
arranged droplets �the nonlocal free energy primarily de-
pends on the droplet concentration cd; for p�1 only a small
correction term is affected by their arrangement, see Appen-
dix B�. Then the system can be split in equivalent cells of
volume V=1/cd, and we may consider just one cell with
periodic boundary conditions. The cell size is R
Rd / p1/3.
We assume that the chains are long enough: RN�R. The
nonlocal free energy is nearly independent of N in this re-
gime �it is easy to check that this is true in the �4 approxi-
mation using Eq. �17��.

The general expression �16� can be simplified using the
ground-state approximation. Solving Eq. �14� by separating
variables n and �r ,r�� and keeping only the ground-state
term we get

��r,r�;n� � ��r,r��e�n for n � R2/b2, �22�

where � is the ground state

a2�6
2� + u� = �� . �23�

Using the initial condition ��r ,r� ;0�=1 and orthogonality
of eigenfunctions of a2�6

2+u we find the normalization con-
dition

� ��� − 1�d3rd3r� = 0. �24�

Typically � is nearly constant far from the droplet �in par-
ticular, for r6
R, where r6	�r ,r���, and the above condi-
tion means that this constant is close to 1, or, more precisely

1

V2 � �d6r � 1, �25�

where d6r	d3rd3r� and the integrations are restricted to one
cell �this condition is obtained from Eq. �24� on using the
identity ���−1�=�−1+ ��−1�2 and neglecting 1

V2 ���
−1�2d6r which is typically small being proportional to p2�.
Integrating Eq. �23� over the cell, and recalling the periodic
boundary conditions we get

� =� u�d6r�� �d6r �
1

V2 � u�d6r . �26�

On using Eqs. �13� and �22� and the last equation we get
Fnloc=NF, where the nonlocal energy per chain is F

� 1
2 �e�N−1�. Recalling that F� 1

2 �W2�seq, and that �W ��1 is

the basic condition of validity of the theory �see Eq. �12� and
above�, we must demand: F�1. Therefore �N�1,F
��N /2, and the total nonlocal energy �per cell� can be trans-
formed to

Fnloc �
c0

2V
� u�� − 1�d6r , �27�

where �=��r6� is defined by Eqs. �23� and �25�, and the
obvious relation �ud6r=0 was used. This Fnloc is obviously
independent of N. The result is valid for �N�1 and N
�NR, where NR=R2 /b2. The two conditions are compatible
if �NR�1. In this case Eq. �27� is valid also for infinitely
long chains N→, since Fnloc is nearly constant for N�NR.
On using Eqs. �26� and �27� the condition �NR�1 can be
rewritten as

Fnloc

Vc0

R2

b2 � 1. �28�

This is a necessary condition of validity of Eq. �27�. In Sec.
IV it is shown that a stronger condition is actually required.

D. Adsorption threshold

Let us consider an example of ��r� with “rectangular”
profile: �=−A if r�Rd and �= pA otherwise, where p
=Vd /V�1,Vd=4	Rd

3 /3 ,V is the volume per cell as before.
The � function satisfying Eq. �23� invites analogies with a
delocalized quantum particle in the potential well −u�r ,r��
=−��r���r�� /K0 in six dimensions, or with a long 6d poly-
mer chain interacting with such well. The ground-state solu-
tion to Eq. �23� with �NR�1 �for p�1� exists only if the
well is not too deep, A�A*, when the 6d chain is not ad-
sorbed on the well. The amplitude A* �or u*=A*2 /K0� corre-
sponding to the adsorption threshold is A*
 l0 /Rd �u*


b2 /Rd
2�, where l0	m1/2a. A numerical analysis of Eq. �23�

yields A*�1.6l0 /Rd for the “rectangular” profile of ��r�.
Thus the necessary condition of applicability of Eq. �27� is
A�A*.

It is enough to find �� in the vicinity of the droplet �it is
this region that provides the dominant contribution to Fnloc in
Eq. �27��. For A�A* the � function is close to 1 everywhere:
�=1+�� , ��� ��1. Then Eq. �23� can be approximated as

a2�6
2�� + u = 0

with the formal boundary condition: ��→0 as r6→. Solv-
ing the equation we get

Fnloc � 3.2pc0Rdb2�A/A*�4, A � A*. �29�

The same result can be obtained using Eq. �1� since higher-
order terms in the perturbation � expansion are negligible for
A�A*.

In the general case, A�A*, Eq. �23� can be approximated
by

�6
2� � 0

for 2Rd
2�r6

2�R2, where r6	�r ,r��, r6
2=r2+r�2. Therefore
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� � �̄ + C6�Rd

r6
�d−2

, d = 6

for Rd�r6�R. Here �̄�1 for p�1−A /A* �the last condi-
tion ensures the validity of Eq. �25�; the case when A is even
closer to A* ,1−A /A*�p, is not considered below since Eq.
�27� is never applicable in this regime, see the next section�.
The factor C6 increases in the vicinity of A*

C6 �
0.61

1 − A/A* , 1 − A/A* � 1.

The nonlocal energy in this regime scales as

Fnloc �
1.52

1 − A/A* pc0b2Rd, 1 − A/A* � 1, �30�

i.e., Fnloc diverges as A approaches A*. The nonlocal energy
was calculated numerically using Eqs. �27� and �23� in the
general case 0�A�A*. For p�1−A /A* the last term �� in
Eq. �23� can be neglected. The result is

Fnloc �
c0a2

2V
Rd

4F̃�B� ,

where B	A2Rd
2 / �K0a2� and the function F̃�B� can be ap-

proximated as

F̃�B� �
B2

B* − B
�15.7 − 0.05B −

0.004B2

11.9 – B
�, B* � 10.23

�31�

with accuracy of 0.2%. Note the general relation between the

factor C6 and F̃

4	3C6 � F̃�B� +
16	2

9
B .

Of course the qualitative behavior of Fnloc defined in Eq. �30�
is valid not only for the “rectangular” ��r� �when ��r� is
constant inside the droplet�: This equation is valid in the
general case. It is only the numerical factors that depend on
the ��r� profile.

Using the above result the condition �28� can be written as

1 − A/A* � p4/3,

which is weaker than the condition 1−A /A*�p assumed just
above.

The following questions arise naturally: What is the upper
boundary of the region of validity of Eq. �30�? What is the
physical picture behind the rapid increase of Fnloc near A*?
What is the behavior of Fnloc for A�A*? We try to clarify
these issues in the next sections.

IV. BEYOND THE REGION OF VALIDITY OF EQ. (27)

A. The importance of adsorption

We start with the general Eq. �10� for the nonlocal energy.
Taking into account that Z=V�1+W� , �W�seq=0 �see Sec.
III A� we rewrite it as

Fnloc � N�W − ln�1 + W��seq. �32�

This equation is much more general than Eq. �12�: It is not
assumed that �W ��1. The equation shows that Fnloc�0 in
the general case.

Let us focus on the most interesting regime A�A* where
Fnloc is rapidly increasing with A. As before we consider ��r�
defining a dilute system of droplets of volume Vd
Rd

3.
��r�
−A inside the droplets, ��A outside. The typical dis-
tance between droplets is R
Rd / p1/3, where p=Vd /V is their
volume fraction, p�1,V=1/cd is the cell volume, cd is num-
ber concentration of droplets.

In order to calculate Fnloc using Eq. �32� we need to know
the distribution of W �W is a random quantity depending on
the copolymer sequence�. The formal analysis of the previ-
ous section suggests that the increase of Fnloc in the critical
region A�A* has something to do with polymer adsorption.
Below we clarify this qualitative idea. Later on we present a
semiquantitative argument allowing to obtain the essential
part of W-distribution in the region A�A* and above A*.

Let us assume for convenience that N
NR=R2 /b2 �i.e.,
the chain size RN
 the cell size R�. It is appropriate to con-
sider the copolymer as a chain of N /gd blobs of size gd

1/2b

Rd. The probability that a given blob is overlapping with a
droplet �i.e., that its potential energy deviates from 0�3 is

pov

Rd

3

R3 
 p. The average number of blobs interacting with a
droplet is small: it equals N

gd
pov
 p1/3. Therefore it is tempt-

ing to assume that no more than one blob is interacting with
the droplet at a time. It is easy to estimate Fnloc with this
assumption. Let Ei be the potential energy of the ith blob
�Ei=0 if the blob does not overlap with the droplet, other-
wise Ei
gd�U+��i�, where �i is the average composition of
the blob, and U ,� are the average values of the correspond-
ing fields over the droplet�. Then by definition

W = �e−�
i

Ei − 1�0
,

where �·�0 means averaging over all chain conformations
with ideal �Gaussian� weights. If only one term in the sum
above can be nonzero at a time, then W can be represented as

W = ��
i

�e−Ei − 1��
0

= pov � Wi,

where Wi= �e−Ei −1�ov and �·�ov means averaging under the
condition that ith blob is overlapping with the droplet. It is
easy to show that �Wi

2�seq
1 for A�A*. Taking also into
account that �Wi�seq=0 and that �Wi are independent vari-
ables �Wi depends on the sequence of the ith blob, sequences
of different blobs are not correlated since the blob size is
much larger than the spin correlation length, gd�m� we find

3Both potential fields U and � are very small outside the droplets;
for simplicity we assume here that they exactly vanish outside; this
assumption is inessential for the conclusions drawn below.
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�W2�seq 
 p2 N

gd

 p4/3 � 1.

Therefore the typical W is small �the probability that �W �
�1 is exponentially low�, so the expression W−ln�1+W� in
Eq. �32� can be approximated by W2 /2

Fnloc 
 N�W2�seq 
 Np2N/gd = c0Vp2/gd 
 pc0Rdb .

�33�

This result is in agreement with Eq. �30� for A=A* /2, how-
ever Eq. �33� significantly underestimates the nonlocal en-
ergy if A is close to the critical value A*. This discrepancy
suggests that the initial assumption that only one blob �or
none� is overlapping with the droplet at a time is not correct
in the critical regime. In other words the states with many
overlapping blobs must provide significant �dominant� con-
tribution to Fnloc, in this regime. This picture obviously cor-
responds to adsorption of a chain fragment �or fragments� on
the droplet.

B. Nonlocal energy generalized

The sequence dependent part of the potential energy of a
blob interacting with the droplet is 
�gd�, where �=
−� /K0
A /K0 and � is the average spin �composition�. It is
clear that adsorbed fragments must be characterized by large
enough negative �. It is important that many adsorbed frag-
ments are less favorable than one continuous fragment. In
fact, consider two adsorbed fragments n1 and n2 separated by
a nonadsorbed loop n. The statistical weight of the loop wn is
proportional to the return probability wn
Vd / �n1/2b�3; the

weight of all loops longer than n ,�m�nwm

Vd

b3 n−1/2, is small
for large n. Therefore the contribution of long loops is neg-
ligible, i.e., typically n�gd, meaning that the adsorbed frag-
ments are in effect not separated. Thus the states when two
or more distinct fragments of the same chain are simulta-
neously adsorbed can be disregarded. The partition function
of a sequence containing an adsorbed fragment �i.e., a frag-
ment with negative enough coarse-grained �� is

Z � V + Vd�eE − �� ,

where the first term corresponds to nonadsorbed conforma-
tions, Vd is the volume of adsorbing “well,” E is the total
adsorption energy, and �= �eE�seq
1. In what follows we ne-
glect � in comparison with eE assuming E�1. Therefore

W � peE. �34�

It is necessary to find the probability of sequences with a
given E=E0

��E0� =
N

gd
e−S�E0�, �35�

S�E0� = − ln�� e−H�s���E0 − E�s��D�s�� , �36�

where s= ��0 ,�1 , . . . ,  is an adsorbing sequence, E�s� is the
adsorption energy for this sequence, e−H�s� is the probability

of the sequence s starting in a given blob. The factor N /gd
accounts for all different starting blobs. For each sequence
s= ��0 ,�1 , . . . ,  we define the function ��n�, the adsorption
energy of the subfragment ��0 ,�1 , . . . ,�n. Obviously E�s�
=���. Then we change variables considering the function
����= dn

d� instead of �n �here n��� is the function inverse to
��n��, and note that H�s� can be represented as a superposi-
tion of contributions coming from different parts of the frag-
ment

H�s� � �
0

E

h������d� ,

where the density h depends only on the local �=���� and its
local derivatives. Doing the similar change of variables in
the integral in Eq. �36� we find

S�E0� = – ln�� e−�
0

E0

h*������d�D������� ,

where the difference h*−h accounts for the Jacobian
D�s�

D������ .

Note that �h*d� is formally analogous to the Hamiltonian, E0
to the “mass,” 1 /� to “density,” and S�E0� to the thermody-
namic potential of a one-dimensional system of particles
with local interactions. The asymptotic behavior of S�E� sug-
gested by this analogy for large E is

S�E� =  E +  �,

where  , � are constants,  E is the bulk contribution, and
 � accounts for the end effects.

The typical energy of interaction of a blob with a near-
critical well �for A
A*� is 
1 �kBT�, therefore both  and !
must be 
1. Thus

��E� �
N

gd
e−S�E� �

3

2	
"

Nb2

Rd
2 e− E, �37�

where gd
Rd
2 /b2 ,"
1 is an unknown numerical factor, and

the additional factor 3
2	 is introduced merely for conve-

nience.
 is the most important parameter which depends on the

composition contrast A , = �A�. For example, consider the
function z�!�= �Z!�seq. Using Z=V�1− p�+ peE� we find

z�!� =� V!�1 − p� + peE�!��E�dE .

In view of Eq. �37� we observe that z�!� must diverge at !
= . Note that Fnloc Eq. �27� is proportional to �W2�seq which
is diverging together with z�2�= �Z2�seq at A=A*. Therefore
 �A*�=2.

Unfortunately, there is no way to calculate z�!� for non-
integer ! analytically. Instead we take another approach to
calculate  = �A� approximately: First we note that E can be
considered as a functional of a smoothed �coarse-grained�
spin sequence ��n� with the length of coarse-graining �n
�m. The probability of a given ��n� is proportional to
e−F���, where F���� 1

2K0
���n�2dn. In the mean-field ap-

proximation S�E� is equal to the minimum of F��� for a
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given E=E���, therefore S�E� is approximately proportional
to 1

K0
. The idea then is to formally increase the block size:

K0→K=!K0, keeping the fields U and � unchanged. This
would result in a similar decrease of S�E�, i.e., the renormal-
ization  → /!. Let us define the function Z�!�= �Z�seq�K
where averaging is performed for sequences with the renor-
malized moment K=!K0. This Z�!� involves �eEe− E/!dE
which diverges at != . On the other hand, �Z�seq�K is equal
to the partition function of the homopolymer chain in the
effective potential U*=U− 1

2K�2=−�!−1� 1
2�

2 /K0 �cf. Sec.
III A�. The depth of this potential well is proportional to
�!−1�A2. The divergence of �Z�seq�K corresponds to the criti-
cally adsorbing well �cf. Sec. III D�, i.e., to �!−1�A2=A*2.
Therefore

 � 1 +
A*2

A2 .

We are now in a position to analyze the behavior of the
nonlocal energy Fnloc in the critical region A�A*. Using
Eqs. �32�, �34�, and �37� we obtain

Fnloc �
3

2	
"

Nb2N
Rd

2 I�p, � ,

I�p, � = �
0



�peE − ln�1 + peE��e− EdE , �38�

where NN=c0V is the total number of units in V.
This equation is asymptotically exact if �i� the lion’s share

of the integral comes from the region of high E
E0 ,E0
�1; �ii� Fnloc is small enough �see Eq. �11��. The first con-
dition is met if A is close to A* or exceeds it, the second is
valid if A /A* is not too high �see below�.4 Evaluating the
integral we find a complicated behavior of Fnloc as a function
of A involving the following four asymptotic regimes:

�i� I�p , �� 1
2

p2

 −2 if 1
ln�1/p�� −2�1 �here the domi-

nant contribution to the integral comes from the region E
�1, peE�1�. Thus

Fnloc � "b2Rdc0p
1

A*2/A2 − 1
for

1

ln�1/p�
�

A*

A
− 1 � 1.

�39�

The approach considered in Sec. III A is valid in this regime,
therefore Eq. �30� is applicable in the case of “rectangular”
composition profile. Comparing it with the result above we
evaluate the coefficient "�3.04 for this case. The typical E
in this regime is E
 1

 −2 
 1
A*/A−1

.

�ii� I�p , �� p2

2 ln�1/ p� for � −2 �� 1
ln�1/p� , and so

Fnloc � "b2Rdc0p ln
1

p
for � A*

A − A*� � ln
1

p
. �40�

Here typically E
 ln 1
p .

�iii� I�p , �� p 

2�2− � for 1
ln�1/p��2− �1. So

Fnloc � "b2Rdc0
pA*2/A2

1 − A*2/A2 for 1 �
A*2

A − A* � ln
1

p
.

�41�

The typical E here is the same as in the previous regime.
�iv� I�p , �� p / � −1� for 1� 1

 −1� ln 1
p , and

Fnloc 
 b2Rdc0pA*2/A2
for 1 �

A2

A*2 � ln
1

p
. �42�

Here the typical E
 ln 1
p like in the previous regimes. In

the last regime the preexponential factor �including "� is
omitted.

Note an exponential increase of Fnloc with A in regimes
�iii� and �iv�.

Let us figure out the typical length g of an adsorbed frag-
ment. In regimes �i�–�iii� the adsorption energy per blob gd is
of the order 1 �kBT�, therefore g
Egd. On the other hand, in
the last regime the adsorption energy E0 per blob gd is large:

E0
gdU. With gd

Rd

2

b2 and U
A2 /K0 we get E0

Rd

2

b2
A2

m


 A2

A*2 , so that g

gd

E0
E
gd

A*2

A2 ln 1
p in the last regime.

For A2

A*2 � ln 1
p the condition �11� is not satisfied, i.e., the

basic Eq. �38� is not valid. In this regime the adsorbed frag-
ments are shorter than gd and are strongly stretched �cf. Ref.
�10��. In fact, the fraction of gd blobs with mean composition
�
−A is p�gd�
exp�−gd

A2

2K0
��p for A2

A*2 � ln 1
p . Therefore

the total number of units in all such fragments is much less
than the number of units in the droplets. Hence the droplets
must be filled by shorter fragments �of length g�gd� with
the same mean composition −A: These fragments are more
numerous. Their size is defined by the condition p�g�
 p,
i.e., g
gd

A*2

A2 ln 1
p . Each g fragment must span the droplet,

i.e., its end-to-end distance must be 
Rd. The nonlocal en-
ergy equals to the elongation energy of all such fragments in
a droplet �10�

Fnloc 

c0Vd

g

Rd
2

gb2 
 b2Rdc0� A2

A*2ln�1/p��2

,
A2

A*2 � ln
1

p
.

�43�

The following A dependence of the typical length of ad-
sorbed fragments is thus predicted

g/gd 
�
1

A*/A − 1
,

1

ln�1/p�
�

A*

A
− 1 � 1

ln
1

p
,

1

A*/A − 1
� ln�1

p
� .

A*2

A2 ln
1

p
, A � A* �

4Note that formally the derivation of Eq. �38� is valid only if N /g
is not too high: In fact Eq. �35� is valid if ��1, i.e., N /gd�e E0.
On the other hand it is easy to show that Fnloc must be independent
of N if N

gd
�E0 �here we take into account that the typical number of

gd blobs per adsorbed fragment is 
E0, see the end of this section�.
The two conditions are obviously compatible since E0�1, 
1,
meaning that Eq. �38� is actually valid for however large N ,N /gd

�E0.
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It is interesting that Fnloc is proportional to A4 both in the
perturbation regime �Eq. �29�� and in the regime of strongly
stretched blobs �Eq. �43��. We stress however that these two
regimes are physically very different: They are separated by
four qualitatively different intermediate regimes �see Eqs.
�39�–�42��.

V. MICELLE FORMATION

A. Dropletlike micelles

We are now in a position to consider the disorder-to-order
transition. In Sec. II we showed that this transition occurs at
negative � �i.e., at ���*�, that it is driven by the local free
energy Eq. �6�, more precisely by the cubic term, and that it
results in formation of micelles, i.e., spherical droplets with
negative �. The transition point is defined by the local en-
ergy only; moreover it is sufficient to consider homogeneous
phases. The local energy density is proportional to �2�−2�
+�4��4�+���, it has two minima at �=0 and at a negative
�. The second minimum is more deep if ��−�0, where

�0 = 2�4�
2.

The second minimum at �=−�0 corresponds to �=−2�.
Therefore for � just above −�0��=−�0+�� ,����0� the sys-
tem tends to separate in two phases, the minor phase with
�=��2��−2� and major phase with �=��1��2�p, where p
is the volume fraction of the minor phase. The local free
energy density in the minor phase is f �2��−2���2��2 c0

m . The
interphase tension � can be easily calculated by minimizing
�f locdx with f loc defined in Eq. �6�, �=��x� ,��− �
=��2� ,��+ �=��1�. The result is �� 1

3
c0l

m
��4�2��3. The inter-

facial thickness is �� 1
��4�

.
The nonlocal energy diverges in the case of macroscopic

phase separation �compare with Ref. �15��, hence it drives a
transformation of the minor phase into a system of spherical
droplets of certain size. The droplet radius Rd and their vol-
ume fraction p can be obtained by minimization of the re-
duced free energy F= m

c0VF=Floc+Fnloc, where

Floc �
m

c0�Vd/p�
�Vdf �2� + 4	Rd

2�� � − 8�2p�� + 8��4
l�3

Rd
p .

�44�

Here Vd= 4	
3 Rd

3 is the droplet volume, and we assume that
Rd��. Fnloc can be obtained using Eqs. �39�–�43� in the
previous section. After simple algebra we get

Fnloc � 4.35
l0
2p

Rd
2 F̃�B,p� , �45�

F̃�B,p�

� �
0.01pB2, B � B*

p

B*/B − 1
,

1

ln�1/p�
� 1 −

B

B* � 1

p ln
1

p
, �1 −

B

B*� � 1

ln�1/p�

pB*/B/�1 − B*/B� ,
1

ln�1/p�
�

B

B* − 1 � 1

const pB*/B, 1 �
B

B* � ln
1

p

const� B

B*ln�1/p��2

,
B

B* � ln
1

p

� ,

�46�

where B=
A2Rd

2

K0a2 �
16�2Rd

2

l0
2 , l0=m1/2a is the typical block size,

B*�10.23 �see Eq. �31��. As nonlocal energy is always posi-
tive, the droplets can be stable only if Floc�0, i.e., Rd
�Rd0

Rd0 = ��4
l�

��
.

Hence B�B0= 4�2

�4�0
2
� �0

��
�2

, i.e., B is large if ����0. It is there-
fore the last line in Eq. �46� that must be applicable for small

��, i.e., Fnloc
 p
ln�1/p�2

Rd
2�4

l0
2 for small �� �an unknown numeri-

cal factor is omitted�. Minimizing F=Floc+Fnloc with re-
spect to p ,Rd we find

Rd 
 Rd0, ln
1

p

 #

�0

����3/2 , for �� � #2�0
2, �47�

where

# 	
l

��4l0

, �48�

is the copolymer sequence parameter �for example, #=1/�2
for the correlated random model�.

For larger ��, in the range �2�
��
�0
�#, minimization of F

yields the nonlocal energy which is much smaller than the
surface energy, Fnloc�Fsurf, and Fbulk�Fsurf �Fbulk and Fsurf
correspond to the two last terms in the r.h.s. of Eq. �44�,
respectively�. These statements can be proved using the fol-
lowing relations:

�Fnloc

� ln Rd
� Fnloc,

�Fnloc

� ln p

 Fnloc,

which are valid for the regimes corresponding to lines 2–5 in
Eq. �46�. Therefore Rd�Rdo for these regimes, i.e., for �2

�
��
�0
�#. As �� increases in this range, the fifth, fourth,

third, second, and first lines in Eq. �46� become consequently
applicable. Minimizing Floc+Fnloc we get ��*� 2

�B*#�0

�0.63#�0 in equations below�
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Rd � ��4
l�

��
, ln

1

p
� 0.39#2� �0

��
�2

ln
��

#2�0
2 ,

for #2�0
2 ��� � #�0, �49�

Rd � ��4
l�

��
, p 


1 − ��/�*

ln�1/��
�2� �*

��
�2

,

for
1

ln�1/��
� 1 −

��

�* � 1, �50�

Rd � ��4
l�

��
, p 


�2

ln�1/��2 , for�1 −
��

�* � � 1

ln�1/��
,

�51�

Rd � ��4
l�

��
, p � 0.163#�0���

�* − 1�2

,

for
1

ln�1/��
�
��

�* − 1 � 1, �52�

Rd � 2��4
l�

��
, p � 0.178

1

#2

����3

�0
2 , for �* ��� � �0.

�53�

The last four regimes Eqs. �50�–�53� are valid if #�1 �this is
true near the Lifshitz point �4��; these results are qualitatively
applicable also for #
1.

For ����0 the interfacial thickness � becomes compa-
rable with Rd, and the droplet composition profile signifi-
cantly deviates from the “rectangular” shape. If #
1 then
the fourth-order approximation for the nonlocal energy �Eq.
�1�� is not valid in the region �� � 
�0: Here the nonlocal
energy must be calculated using the general expression, Eq.
�27�. The droplet �micelle� composition profile essentially
depends on two parameters: # and � /�0, and can be obtained
numerically by an appropriate minimization procedure. As
�� increases �� increases� the profile shows more and more
pronounced oscillations. We do not analyze these nonuniver-
sal profiles, but rather turn to the more universal regime �
��0. In this regime the fourth-order approximation for the
nonlocal energy is applicable.

B. Spherical-wave micelles

Let us consider a system of spherically symmetric mi-
celles, their concentration is cd. Each micelle is characterized
by the composition profile ��r�. Below we neglect interac-
tions of micelles and consider just one cell of volume Vd
=1/cd. The total free energy over the total volume is

f = cdFloc +
1

2
cd

2fnloc, �54�

where

Floc �
c0

m
� �− 2��2 + l2����2 + 4��4�

3 + �4�
4d3r ,

�55�

fnloc �
16c0

ml0
2 �

q,q�

��q�2��q��
2

q2 + q�2 . �56�

�Note that �q=�eiq·r��r�d3r, and the integrals are taken over
one cell.� Minimizing f with respect to cd

cd = −
Floc

fnloc
, f = −

1

2

Floc
2

fnloc
. �57�

The next step is to minimize f �defined in the last equation�
with respect to ��r�. In the first approximation we may dis-
regard the local �3 and �4 terms. Then it is easy to prove �1�
that at the minimum �q is concentrated on the sphere q
=q* ,q*2=2� /3l2, i.e., �q=0 for q�q*. In this case f = f0

f0 = −
1

32

c0

m

l0
2

l2�4�

3
�3

. �58�

Recalling the spherical symmetry we find the order param-

eter profile: ��r��A
sin�q*r�

q*r
.

With subdominant local �3 and �4 terms the spectrum �q
must be still localized near q=q* :�q=g�Q�, where Q=q
−q*, and g�Q� decays for �Q ��" ,"�q*. Evaluating f in this
case �"�q*� we find

f = f0�1 − � f� , �59�

� f �
1

2

� Q2g2�Q�dQ

� g2�Q�dQ

+
3�4

2�

� �4��3 + �4�d3r

� �2�r�d3r

. �60�

It is easy to show that the last term in the r.h.s. depends on
g�Q� via just two integral parameters: I1=�g�Q�dQ and I2

=�g2�Q�dQ. Therefore min f corresponds to min
�Q2g2�Q�dQ at fixed I1 and I2. Using the method of
Lagrange multipliers we find: g�Q�= const

1+Q2/"2 . The correspond-
ing composition profile is

��r� � Ae−"�sin�q*r�
q*r

, q* = �2�

3
�1/21

l
. �61�

The profile corresponds to a decaying spherically symmetric
composition wave. On using Eq. �60� we get

� f �
2"2

q*2 +
3	

2

�4"

�q* �4�A + A2� .

Minimization of � f with respect to " ,A then yields

A = − 2�, " =
3	

4

�0

�
q*, � f = −

9	2

8
� �0

�
�2

,

f � −
1

32

c0

m

l0
2

l2�4�

3
�3�1 +

9	2

8
� �0

�
�2� . �62�

Thus " /q*
�0 /� is indeed small if ���0. The micelle radius
can be defined as Rd=1/"
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Rd �
4

3	
�3

2
�1/2 l

��0
� �
�0
�1/2

.

Note that Rd��
1/2 and 1/q*��−1/2. Concentration of micelles

�see Eq. �57�� is

cd � �− 2f/fnloc �
1

24	

l0
2�

�2 q*4" � �5/2.

The fraction of volume occupied by micelles is

p 
 cd
4	

3
Rd

3 �
32

35	2

1

#2

�4

�0
3 .

Therefore p�1 if � /�0�
1
�� .

Let us verify the validity of the fourth-order approxima-
tion Eq. �56� for the nonlocal energy of the spherical micelle
for ���0, Fnloc

�4� = 1
2cd

2fnloc. The correction to this approxima-
tion, Fnloc

�8� is defined in Eq. �21�. Using this equation with
��r� Eq. �61� we get

Fnloc
�8� /Fnloc

�4� 
 � �0

�
�4

.

Therefore Fnloc
�8� /Fnloc

�4� � �� f�, i.e., Fnloc
�8� produces a subdomi-

nant correction to the average free energy density f .

C. bcc micelles

The spherical-wave micelles considered above are not
stable at sufficiently large �’s: A structure of secondary do-
mains with internal primary composition pattern must be fa-
vorable in the regime �2���� �15�. The transition from
spherical-wave micelles to secondary domains is considered
below. The free energy of the secondary domain structure
was calculated in Ref. �15�. Here we slightly generalize the
result allowing for arbitrary values of the parameter #= 1

��4l0
.

We consider spherical secondary domains of radius Rs, and
mean concentration cs. The most stable primary pattern is a
body-centered cubic �bcc� structure of six plane waves with
q=q*�� 2�

3
�1/2 1

l : ��r��−2A�s=1
6 cos�qs ·r�. The amplitude A

is nearly constant inside the secondary domain; A�0 in the
matrix outside the domain.

The secondary structure can be analyzed using the general
Eqs. �54�–�57� �with cd replaced by cs�. These equations stay
valid except a modification of Eq. �56�: Higher-order correc-
tions �see Eqs. �19� and �21�� to the nonlocal energy must be
taken into account

fnloc �
c0

m

16

l0
2 ��

q,q�

��q�2��q��
2

q2 + q�2 +
1

q*4l0
2�� ��r�3d3r�2

+ �
q,q�

��̃q�2��̃q��
2

q2 + q�2 � , �63�

where �̃�r�=
�2

q*I0
��2�r��loc, �·�loc means smoothing over a

length-scale longer than 2	 /q*, but shorter than Rs. Calcu-
lating the mean free energy density f for ���0, we get in
analogy with Eq. �59�

f = f0�1 − � fs� ,

where f0 is defined in Eq. �58�, and

� fs � �p + �s + �i.

Here �p is due to the �3 and �4 terms in the local energy and
the sixth order nonlocal term

�p � −
3�4

2�
�16�A − 45$A2�, $ 	 1 +

32

45
#2.

Minimizing �p with respect to A we get

A = A0 �
8�

45$
, �p � −

16

15$

�0

�
.

The second correction �s is due to the second nonlocal en-
ergy term �see Eq. �63��

�s � 0.151
Rs

2�4l2

�l0
4$4 .

The last term �i accounts for the surface energy of the sec-
ondary domain

�i � 1.46
l���4

�Rs$
.

Note that �i is proportional to the surface tension � at the
boundary between bcc and disordered regions. The tension
was calculated in Ref. �15� �see Eq. �32� there�. The thick-
ness of the interfacial region is %�1.37 l$

���4
.

Minimizing �s+�i with respect to Rs we get

Rs �
1.69

#1/3

l0$

�
, � fs � �0.65#4/3 − 1.07$�

�0

�$2 .

The bcc secondary domains are more stable than the
spherical-wave micelles if � fs is smaller than � f defined in
Eq. �62�. The transition �� fs=� f� occurs at �=�t,

�t

�0
�

10.41$2

$ − 0.61#4/3 . �64�

Thus, �t /�0�20 for #=1/�2 corresponding to the correlated
random copolymers. This large value of �t /�0 approximately
justifies the assumption ���0 used above to calculate the
free energies of spherical-wave and bcc micelles. For ex-
ample, the spherical-wave micelles are characterized by the
ratio " /q*�0.12 at the transition point, so the approximation
" /q*�1 is plausible.

The number of primary “spheres” �loops� per secondary
domain is

Np � Vs/Vp,

where Vs�4	Rs
3 /3 is the domain volume, and Vp

=8�2	3 /q*3 is the volume per loop in the bcc structure.
Using the results for Rs and q* we obtain
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Np � 0.0889
$3

#4 � ��0
�3/2

.

For #=1/�2 at the transition point we thus get Np�77. For
smaller values of # �i.e., closer to the Lifshitz point� Np is
larger. Np further increases for ���t. Therefore the second-
ary domains are always significantly larger than the primary
domains.

The volume fraction of bcc micelles is

p = csVs = –
Floc

fnloc
Vs �

75

256

l0
2

l2

�2$2

�2

and their concentration is

cs =
p

Vs
� 0.0145#

�

l2l0$
�2.

The ratio of concentration of spherical-wave micelles to con-
centration of bcc micelles is

cd

cs
� 2.2

$

#4� ��0
�1/2

.

This ratio is large at the transition point: cd /cs�50 if #
�1/�2.

It is interesting that the narrow interface approximation
�assuming that %�Rs� becomes strictly valid near the Lif-
shitz point where # is small: Note that % /Rs�0.81#4/3. There-
fore the theory of secondary domain structures developed in
Ref. �15� and outlined above is asymptotically exact for �
��0 if #�1.

VI. DISCUSSION AND CONCLUSIONS

�1� Microphase-separation transition in irregular �par-
tially random� block copolymers is considered in the paper.
We analyze the most important case when the copolymer
chemical sequence �the sequence of A and B units� is
quenched; different chains, or different fragments of the
same chain are generally characterized by different se-
quences which however are governed by a common statisti-
cal distribution. The relevant “order parameter” is the local
copolymer composition, i.e., the local excess of A units over
B units.

We focus on the weak segregation regimes �WSL� appro-
priate for compositionally nearly symmetric copolymer sys-
tems. It is shown that the transition from a disordered liquid
�macroscopically homogeneous copolymer melt� to a micro-
domain superstructure necessarily involves an intermediate
stage of micelle formation. Although block-copolymer mi-
celles are well known, their relevance for weak segregation
was not recognized so far. We considered different micelle
types: plain spherical micelles with nearly homogeneous
core �Sec. V A�; spherical-wave micelles with space-
oscillating composition profile �Sec. V B�; and secondary
micelles with internal periodic structure �Sec. V C�.

�2� In the paper we present a rather detailed analysis
of the nonlocal energy Fnloc in the most relevant case when

micelle volume fraction is low p�1. This energy plays a
keyrole in stabilizing random copolymer micelles in the
WSL. So far the nonlocal energy was treated using the well-
known fourth-order expression �see Eq. �1�� which is valid if
the amplitude of composition inhomogeneity A=�� is small
enough. We showed that this classical fourth-order approxi-
mation for Fnloc is insufficient for the analysis of micelle
formation. Some time ago �10� we argued that Fnloc must be
also proportional to A4 in the case of sufficiently large am-
plitude, when the relevant fragments of copolymer chains are
strongly stretched. It is interesting that the regime of strongly
stretched fragments does not necessarily imply a strong seg-
regation regime: The composition inhomogeneity may be
still relatively weak: �� /�max�1, see Sec. IV B and Ref.
�10�. In the present paper we find that there are many inter-
mediate regimes between the two A4-behaviors for p�1 �see
Eqs. �39�–�42��.

The most essential features of these regimes are summa-
rized below �points 3–5�:

�3� If A is not too high then Fnloc per micelle is pro-
portional to p in the limit p→0, so that Fnloc / p depends only
on the micelle composition pattern �more precisely, we con-
sider spherical micelles of volume Vd and radius Rd, the
composition �= const in the matrix outside the micelles, �
deviates from this constant inside the micelle�. We establish
exact analytical expressions defining nonlocal energy in this
regime, Eqs. �13�–�16�. In the low-amplitude limit the clas-
sical A4 behavior is recovered �see Eq. �1� for infinite chains,
or Eq. �17� for chains with finite number of blocks�. In effect
the general result includes all higher-order nonlocal terms in
the A expansion. We showed that in the case of a structure
involving two essentially different length scales the domi-
nant contributions to Fnloc may come from two terms: A4 and
A8. It is demonstrated that the A8 term �see Eqs. �21� and
�20�� isequivalent to the nonlocal energy associated with the
second-order parameter introduced in Ref. �15�.

�4� Let us change the amplitude of the composition
profile ��r� keeping its shape invariant and consider Fnloc / p
is a function of A. In the case of infinite chains �N→ � this
function shows an interesting and nontrivial behavior: It di-
verges as A tends to the critical value A* �A* depends on the
shape of ��r��. In order to qualitatively account for this be-
havior let us consider a simple example: Instead of a micelle
we consider a subvolume Vd of the total volume V ,Vd�V,
but Rd �the size of Vd� is much larger than the copolymer
chain size. Then the chains can be treated as material points;
their concentration is constant �=c0 /N� as the system is in-
compressible. To further simplify the model, we consider
symmetric completely random copolymer chains, N mono-
mers per chain, mean number of A units per chain is N /2,
N�1. The chains differ in their mean composition �
=NA /N−0.5, where NA is the number of A units in a chain.
The total number of chains with a given composition is N�

�const e−�2/�2�0
2�, where �0

2=1/ �4N�, and const accounts for
normalization. The imposed order parameter field is ��r�
= �1− p�A for r in Vd ,��r�=−pA otherwise, where p=Vd /V
�1. The ideal-gas free energy of the system is
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F = �
�
� c��r�ln c��r�d3r ,

where c��r� is local concentration of chains with composi-
tion �. The free energy for a given ��r� can be obtained by
minimizing F with side conditions

� c��r�d3r = N�, �
�

c��r� = c0/N, �
�

�c��r� = ��r�c0/N .

The result is

F = const + Floc + Fnloc,

where const is irrelevant, Floc=2c0���r�2d3r=2c0Vd�1
− p�A2, and

Fnloc �
c0Vdp

2N
�e4NA2

− 1 − 4NA2� .

if p is small enough: pe12NA2
�1. Thus Fnloc�A4 for small

A�NA2�1�, but it exponentially increases with A if NA2

�1. The physical meaning of this strong increase is
simple: For NA2�1 the only way to achieve the required
composition in Vd is to accumulate there untypical chains
with ���0. The number N* of these chains exponentially
decreases with A. Replacing typical chains in Vd by the
untypical chains results in a significant depletion of un-
typical chains outside Vd. The relative depletion strength
is inversely proportional to N*, i.e., it exponentially in-
creases with A. Fnloc is related to this depletion effect and
thus it also increases exponentially. For sufficiently large
A the total number of untypical chains �with composition
��A� is not enough to fill Vd, hence Fnloc becomes for-
mally infinite �the singularity is approximately defined by
the condition pe2NA2


1�.
Of course the model treating copolymer chains as material

points may seem oversimplified, but it captures all right the
qualitative tendency of sharp increase of Fnloc near a certain
value of the composition contrast.

�5� Let us return to the more interesting case when
polymer coils are much larger than the micelle size Rd �more
precisely, we assume that N→�. In this case the nonlocal
energy is related to interactions of the relevant blobs �co-
polymer fragments of Gaussian size Rg
Rd� with the mi-
celle, i.e., with the region Vd of nonuniform composition �see
Sec. IV B�. The blobs with the mean composition � of the
same sign as � in Vd are referred to as proper blobs �the
typical � in a proper blob is 
l0 /Rd, where l0=m1/2a is the
typical size of A or B blocks�. The proper blobs are attracted
by Vd; the attraction energy per proper blob is kBTA /A*,
where A*
 l0 /Rd. If several proper blobs form a continuous
sequence, it will tend to adsorb on Vd if A
A*.As A in-
creases toward A* longer and longer sequences provide the
major contribution to Fnloc. The very A* is defined by the
balance between the adsorption energy and the entropy loss
associated with the low probability of a continuous sequence
�see Sec. IV B�. For A�A* the depletion effect considered in
the previous point 4 becomes very significant because long
sequences of proper blobs are extremely rare. The depletion

results in a nonlinear dependence of Fnloc on p for A�A*:
Fnloc�p −1 for p→0, where the exponent  −1 depends on
A: It decreases with A as  −1�A*2 /A2. For small p this
dependence of  results in an exponential increase of Fnloc
with A in the region A*�A�A*�ln 1

p
�1/2, see Eqs. �41� and

�42�. Therefore the nonlocal effects are significantly en-
hanced for p�1,A�A* as compared to the classical A4 pre-
diction, Eq. �1�. It is remarkable however that conformations
of fragments of copolymer chains averaged with respect to
sequence variations remain nearly Gaussian for A
�A*�ln 1

p
�1/2, i.e., in all the regimes considered so far except

the regime of strongly stretched blobs, Eq. �43�. The idea is
that although untypical long copolymer fragments with ap-
propriately shifted composition tend to adsorb on the micelle
and thus they significantly contribute to Fnloc, their contribu-
tion to the overall conformational distribution is negligible.5

�6� We show that the disorder-to-order transition in the
copolymer system occurs when the interaction parameter � is
still below the critical �spinodal� point �*: The transition
point is �=�0=�*�1−const �2�, where � is the mean compo-
sition asymmetry �excess of A over B� of the copolymer
sequence, and const is a numerical constant. This is in con-
trast with the previous theories �1,6,15� predicting the tran-
sition for random copolymers precisely at the spinodal �
=�*.6 Above �0 a structure of micelles is formed �see Sec.
V�. Close to �0 the micelles are nearly uniform droplets with
“reflected” composition �i.e., if the relative excess of A over
B in the matrix outside the micelles is �, then a nearly equal
excess of B over A, −�, is predicted in the micelles�; the
composition changes from −� to � in a relatively thin surface
layer. Just above �0 the micelles are very large and their
volume fraction p is exponentially small. The micelle size is
inversely proportional to x=

�−�0

�*−�0
�note that x= �

�0
, see Sec.

V�; it decreases down to Rd
 l0 /� at x
1 �in particular, at
�=�*�. Concurrently the fraction of micelles increases to p

�2. In the region x�1 the micelles are not uniform any
more: They show progressively more pronounced oscilla-
tions. For x
10 their structure is approximately described
by the spherical-wave model �Eq. �61��. A transformation of
spherically symmetric micelles to micelles with internal �pri-
mary� pattern is predicted at x=xt�20, see Eq. �64�. This
transformation is a first-order transition accompanied by a
significant change of both the size and number of micelles:
For example, the number of micelles decreases by a factor
�50 at the transition point. The emerging internal composi-
tion pattern is a nearly periodic structure with body-centered
cubic �bcc� symmetry inside each micelle. The number of
internal subdomains �loops of bcc structure� per micelle Np is

5For example, consider all g fragments starting at a given point r
near Vd. Their overall distribution is nearly Gaussian at A
A* al-
though some of these fragments are attracted by Vd �those with
proper mean composition�, and some �with the opposite composi-
tion� are repelled.

6The order-disorder transition at �0��* was predicted in Ref.
�17�. The transition �0 is not affected by the nonlocal free energy
contribution. That is why the correct �0 can be deduced from the
results of Ref. �12� in spite of the incorrect treatment of the non-
local energy adopted there.
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large at the transition point Np�80 and it increases further
with �. Since Np must change in a discontinuous way, we
expect a series of auxiliary first-order structural transitions
above �t. These transitions are expected to be weak as Np is
large. The predicted sequence of micelle transformations is
illustrated in Fig. 1.

�7� A gas of micelles is predicted at � just above �0
when the micelle concentration is very low, and hence their
interactions are negligible. However the interaction energy
increases with � as the micelle concentration rises, therefore
micelles crystallize in a superlattice at some �. This is a
first-order transition of a special kind that is not accompanied
by a phase separation �see Appendix B�. Using Eq. �B14� we
estimate the interaction energy per micelle Fint=Fnloc

�8� as
Fint
kBT b3

v m1/2�11/3 for x
1 �v=1/c0 is the volume per
monomer unit�. Therefore micelles are ordered at x
1 if
�m3/22�1, otherwise the ordering transition is shifted to x
�1. The most stable superlattice of micelles is of face-
centred cubic �fcc� type both at x
1 and x�1 �see Appen-
dix B�.

�8� The free energy of a structure involving two essen-
tially different length scales 1 /q* and ��1/q* was calcu-
lated in Ref. �15� using the concept of the second-order pa-
rameter for the case when the primary structure is a
superposition of weak harmonic waves �A�A*� with nearly
equal wave numbers q�q*. These results are generalized for
the case when A
A* and for arbitrary primary pattern in-
volving q’s of different magnitude �see Appendix A�. It is
shown that in the general case the second-order parameter is

proportional to the nonlocal energy associated with the pri-
mary structure.

�9� The results obtained in the paper are applicable
near the critical point of a system of stochastic copolymers
�both second and third derivatives of the free energy density
with respect to composition must vanish at the critical point�.
Otherwise the results are rather universal. They are appli-
cable to copolymer melts, to their concentrated and semidi-
lute solutions, including moderately selective solvents. The
monomer units can be geometrically asymmetric: The as-
sumptions that A and B blocks are characterized by the same
statistical segments and the same volume per unit are not
essential. The copolymer sequence must satisfy a few broad
conditions: It must be �at least partially� irregular, quenched,
characterized by finite-range correlations; the copolymer
chain must be much longer than the correlation range which,
in turn, must much exceed the unit size. Different chains are
characterized by different �uncorrelated� sequences. This
class includes, in particular, correlated random copolymers
�11,15�, and block copolymers with polydisperse blocks
�4,5,10,14�. For x�1/� the only essential nondimensional
parameter involved in the theory is #= 1

��4l0
�see Eq. �48��;

#2=1/2 for correlated random copolymers; #2 is small in the
vicinity of the Lifshitz point �4,5�. The narrow interface ap-
proximation used to analyze the structure of �secondary� mi-
celles with internal bcc composition pattern in the range 1
�x�1/� is asymptotically valid for small #.

�10� Composition fluctuations are not considered in
the paper. The fluctuation effects are negligible near the criti-
cal point if �m1/4�1 �2,12�.
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APPENDIX A: FREE ENERGY OF A SECONDARY
STRUCTURE

Let us consider a structure of periodically arranged sec-
ondary domains in a disordered matrix. Each secondary do-
main V2 of size � shows an internal periodic structure �̃�r�.
The composition profile in one cell of the secondary struc-
ture �the cell volume is V� is ��r�= �̃�r�&�r�, where

&�r�= �1, r in V2

0, otherwise . The function &�r� defines the secondary

structure, while �̃�r� corresponds to the primary structure
with period 
�. We assume that ���, and that ��̃�r��=0,
where �·� means averaging over the primary cell �the latter
condition follows from the requirement ���r�d3r=0�.

We start formally with the case when the primary struc-
ture occupies the whole volume of the system �V=V2�. The
nonlocal free energy of the system of infinite chains is then

defined in Eq. �27�, where �= �̃ satisfies Eq. �23�

a2�6
2�̃ + ũ�̃ = �1�̃ , �A1�

where ũ�r ,r��= �̃�r��̃�r�� /K0 , ��̃�=1. Using the above equa-

tions and the periodicity of �̃ we find the average density of
the nonlocal energy

FIG. 1. The schematic sequence of micelle transformations as
the interaction parameter � increases beyond the threshold �0: �a�
disordered nearly uniform micelles; �b� ordered nearly uniform mi-
celles �simple cubic lattice is shown instead of face-centered cubic,
for simplicity�; �c� spherical-wave micelles; and �d� micelles with
internal bcc structure.
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f1 =
c0

2
�1.

These equations are valid if �1 is low enough

�1�
2/a2 � 1 �A2�

�see end of Sec. III C, Eq. �28��. Note that this condition

ensures that �̃ must be close to unity everywhere, perhaps,
apart from some regions occupying a small fraction of the
volume �where ũ is high�.

Turning to the general case, ��r�= �̃�r�&�r� �primary
structure in V2 and disordered matrix in V−V2� we demand

that the function �̃�r� satisfies Eq. �A1� when both r and r�
are in V2. Outside this region it must obey the Laplace equa-
tion

�6
2�̃ = 0.

Therefore for any �r ,r���̃ satisfies the equation

a2�6
2�̃ + u�̃ = �2� , �A3�

where �2=�2�r ,r��=�1&�r�&�r�� and u=��r���r�� /K0

= ũ�r ,r��&�r�&�r��. Obviously thus defined �̃ must be nearly

periodic in V2 and nearly constant, �̃�1, outside V2 �here
we disregard the interfacial layer�s� of thickness 
� at the
boundary between V2 and the matrix�.

Next we write �= �̃��, where �� is a modulation function
corresponding to &�r�. Substituting this � in Eq. �23� and
using Eq. �A3� we get

a2�6
2�� + 2a2�� ln �̃� · ��� = �� − �2���. �A4�

The second term in the l.h.s. of the last equation can be

neglected since �� ln �̃�=0, and, more importantly,

��� ln �̃� ·�����0 �the last statement can be verified by

solving Eq. �A4� perturbatively treating the � ln �̃ term as a
perturbation�. Therefore

a2�6
2�� � �� − �2���. �A5�

Recalling the periodicity of �� �with elementary cell V� we
find

� �� − �2���d6r = 0.

This equation defines � once �� is known.

Taking into account that ��̃���V�1, and that ��̃��1 in-

side V2 , �̃�1 outside V2, we get: ����V�1, where �·�V

means averaging over the secondary cell V ·V. Let us con-
sider now the most important case, when �� is close to 1
everywhere: ��=1+��� , ���� ��1. Then, using Eq. �A5� we
get

��q,q�
� �

�1&q&q�

q2 + q�2 , �q,q�� � 0,

where ��q,q�
� ,&q are Fourier transforms of ����r ,r�� ,&�r�,

respectively. Finally, on using Eq. �27�, we obtain

Fnloc �
c0

2V
� u�̃��d6r

�
c0V

2
�1p2

2 +
c0

2Va2�1
2�

q,q�

�&q�2�&q��
2

q2 + q�2
, �A6�

where p2=V2 /V is the fraction of ordered �secondary� do-
mains, and Fnloc is the nonlocal energy per cell V. This equa-
tion is valid if ���� ��1, i.e.,

�1�
2/a2 � 1, �A7�

which is a stronger requirement that the condition �A2�. The
first term in the r.h.s. of Eq. �A6� is the nonlocal energy due
to primary structure, and the second is that due to secondary
structure. This second term generalizes the secondary nonlo-
cal energy obtained in Ref. �15� for the case of a weak pri-
mary structure, when �̃�r� is a superposition of weak har-
monic waves with wave-vectors qi , �qi � =q*. In this case �1
can be easily calculated using the classical fourth-order ex-
pression Eq. �1�

�1 �
8

m2a2q*2 ��̃2�2.

With �1 defined above, the last term in Eq. �A6� becomes
identical to the secondary nonlocal energy obtained previ-
ously �15� using the concept of the second-order parameter
�̃. In the general case, when �̃�r� involves wave numbers of
different magnitude, we can still think of the second-order
parameter �̃ conjugate to the given primary structure: �̃ may
involve local fluctuations of the sequence correlation func-
tions �the pair function C��n� Eq. �4�, and higher-order func-
tions�. We anticipate that �̃ is nearly constant in the ordered
domain V2 and in the matrix: �̃�r��const�&�r�− p2�. Thus,
following the argument explained in Ref. �15�, one can ob-
tain the general expression for the secondary nonlocal energy

Fnloc
�8� =

const

V
�

q,q�

�&q�2�&q��
2

q2 + q�2
�A8�

with unknown constant. By comparison with Eq. �A6� we

find const=
c0�1

2

2a2 .
There is one subtle point here: As the modulation function

&�r� is periodic, the integrals in Eqs. �A6� and �A8� must be
replaced by the corresponding sums: �q,q�→

1
V2 �q,q�. The

sum in Eq. �A6� should include all terms with either q�0 or
q��0. On the other hand, the second-order parameter for-
malism yields the same sum, but with both q�0 and q�
�0. The difference between ��q,q���0 and �q�0,q��0 is neg-
ligible for p2→0, i.e., in the regime where the six-
dimensional approach �Eq. �27�� is asymptotically exact. On
the other hand, the validity of the second-order parameter
��̃� approach does not depend on p2 since �̃ is a local pa-
rameter characterizing the copolymer sequence. Therefore it
is likely that it is the second approach that yields the expres-
sion for the secondary nonlocal energy which is valid for any
p2
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Fnloc
�8� �

c0

2V3a2�1
2 �

q�0,q��0

�&q�2�&q��
2

q2 + q�2 . �A9�

The above results can be generalized to the case, when the
mean order parameter � averaged over the ordered domain is
nonzero: ���r��V2

�0. In this case the composition distribu-
tion can be represented as

��r� = �̃�r�&�r� + �̄�r� ,

where �̃ is a periodic function, ��̃�=0 as before, and �̄�r� is
a smooth function which is nearly constant in the regions of
size 
� �the typical example: �̄�r�= �̄0�&�r�− p2��. Then the
“potential” u�r ,r��= ��̃�r��̃�r��&�r�&�r��+ �̄�r��̄�r��
+ �̃�r��̄�r��&�r�+ �̃�r���̄�r�&�r�� /K0. It is possible to show
that the mixed terms �the last two terms in curly brackets� are
not significant: They produce just a subdominant correction
to the nonlocal energy if the basic condition �A2� is valid.
Keeping only the first two terms in curly brackets in the

above expression for u, representing �= �̃��, and proceeding
along the line considered before Eq. �A9�, we find

Fnloc
�8� �

c0

2V3a2 �
q�0,q��0

1

K0
2 ��̄q�2��̄q��

2 + �1
2�&q�2�&q��

2 +
2�1

K0
�̄q�̄q�&−q&−q�

q2 + q�2 . �A10�

Here, in addition to condition �A7�, we assume that

�̄2�2

K0a2 � 1. �A11�

This equation can be also formally derived using the fourth-
order perturbation approach �15� involving two independent
order parameters �̄ and �̃.

APPENDIX B: INTERACTION OF MICELLES

The �droplet� micelle concentration depends on the inter-
action parameter �. There is a dilute nearly ideal gas of mi-
celles very close to �0. On the other hand the micelles form
a super-crystal at higher �’s. The corresponding gas-to-
crystal transition and the super-lattice type are defined by
micelle interactions.7

Below we analyze these interactions and determine which
super-crystal structure is the most favorable. To this end the
lattice-dependent part of the free energy must be established
first. For infinite chains this can be done using the approach

considered in Sec. III C. The composition parameter field is8

��r� = �
n

��0��r − r�n�� − cd�0, �B1�

where ��0��r� is the composition profile of one droplet, ��0�

→0 as r→, r�n� are the positions of droplet centers, cd is
their mean concentration, �0=���0��r�d3r. The potential field
involved in Eq. �23� is u�r1 ,r2�=��r1���r2� /K0. We consider
the general case u
u*. The nonlocal free energy per micelle
�per cell of volume V=1/cd� is defined in Eq. �27�. Defining
Fourier transforms of the functions u�r1 ,r2�	u�r� and
��r1 ,r2�	��r�,9

uq = �
V2

u�r�e−iq·rd6r, �q = �
V2
��r�e−iq·rd6r . �B2�

We rewrite the nonlocal energy as

Fnloc �
c0

2V3 �
q�0

uq�−q. �B3�

The integrals in Eqs. �B2� are taken over one cell. Taking
into account that �0�V2 �see Eq. �25�� we define ��r�=1
+%�r� and rewrite Eq. �23� in terms of Fourier transforms
�note that %q=�q for any q�0�

7It is more appropriate to consider the ordering as a liquid-to-
crystal transition since its concentration window is very narrow. In
fact, the interaction of micelles is almost solely due to the nonlocal
energy, which therefore is the major driving force for crystalliza-
tion. However the nonlocal energy never favors phase separation:
on the contrary, it always tends to suppress all sorts of long-range
composition fluctuations in the system. Therefore crystallization of
droplets is not accompanied by any significant phase separation as
long as the contribution of the local energy to the micelle interac-
tion is very small, which is true since the volume fraction of mi-
celles is low.

8It is more physically meaningful to replace cd�0 by cd�0

�1−�n��r−r�n���, where ��r��1 for r�Rd, ��r��0 for r
�Rd ,Rd is the droplet radius. However this modification would not
affect the non-local interaction energy calculated below.

9Note that r= �r1 ,r2� and q= �q1 ,q2� are six-dimensional vectors
here and below in this section.
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− �� + a2q2�%q + uq +
1

V2 �
q��0

uq−q�%q� = 0, q � 0,

�B4�

where q ,q� take all discrete values defined by the six-
dimensional lattice. For example, for a simple cubic lattice
q= 2	

R n, where n is a six-dimensional vector with integer
components n�Z6, R is the lattice period, = distance be-
tween the nearest micelles �R3=V�. Using Eqs. �26� and �29�
we find �
 p2�b /Rd�2 for A
A*. On the other hand, a2q2

=
�2	�2

6 �b /Rd�2p2/3 �n�2, so that a2q2

� �p−4/3�1 for any nonzero
q. Therefore we can neglect � in Eq. �B4� for q�0

− a2q2%q + uq +
1

V2 �
q��0

uq−q�%q� � 0, q � 0. �B5�

Using Eq. �B1� we get uq=uq
�0�+�uq,

uq
�0� = �q1

�0��q2

�0�/K0, �B6�

�uq = −
�0

K0
��q1

�0���q2� + �q2

�0���q1�� + u0��q� ,

where q= �q1 ,q2� , �q1

�0�=���0��r1�eiq1·r1d3r1 , ��q1�

= �1, q1=0

0, q1�0  , u0	u0
�0�=�0

2 /K0. In the main approximation

we may replace 1
V2 �q� by � d6q�

�2	�6 , and neglect �u

− a2q2%q
�0� + uq

�0� + �
q

uq−q�
�0�

%q�
�0� = 0, �B7�

which is equivalent to

a2�2%�0� + u�0��1 + %�0�� = 0,

where �2=�r1

2 +�r2

2 ,%�0��r�→0 for r→. Obviously %�0� is a
single-micelle property that does not depend either on mi-
celle concentration cd or on the super-lattice symmetry.
Equation �B7� shows that %q

�0��
J+u0

a2q2 at small q’s, where

J =� u�0��r�%�0��r�d6r . �B8�

It is clear that %q must show a similar 1 /q2 singularity at q
→0. This singularity produces a correction to the integral
representation of the sum in Eq. �B5�

1

V2 �
q��0

= �
q�

+
1

V2 �
q��0

˜

, �B9�

where �˜ is the regularized sum which is effectively localized
near the singular point. Substituting u=u�0�+�u and %q=%q

�0�

+
�uq

q2a2 +�%q , q�0, using the representation �B9� and neglect-
ing inessential subdominant terms we get

− q2�%q + �
q�

uq−q�
�0� ,�%q� = Gq, �B10�

where

Gq � −
1

V2 �
q��0




uq−q�
�0�

%q�
�0� −

1

V2 �
q��0

�uq−q�%q�
�0�

−
1

V2 �
q��0

uq−q�
�0� �uq�

q�2a2 .

Using Eqs. �B6� we obtain

Gq � −
1

V2uq
�0�J + u0

a2 �
q��0

˜

1

q�2 +
1

V

�0

K0
2�

q3

�%�q1−q3,q2�
�0�

+ %�q1,q2−q3�
�0� ��q3

�0� +
1

V2

�0

K0
2a2��q1

�0� �
q3�0

�q2−q3

�0� �q3

�0�/q3
2

+ �q2

�0� �
q3�0

�q1−q3

�0� �q3

�0�/q3
2�

� − uq
�0� 1

V2a2�J �
q��0

˜

1

q�2 + u0 �
q1��0,q2��0

˜

1

q�2�
+

1

V

�0

K0
2�

q3

�%�q1−q3,q2�
�0� + %�q1,q2−q3�

�0�

+
1

q3
2a2��q1

�0��q2−q3

�0� + �q2

�0��q1−q3

�0� ���q3

�0�. �B11�

Here q= �q1 ,q2�, q�= �q1� ,q2�� are six-dimensional vectors,
q1 ,q2 ,q3 are three-dimensional vectors, u0=�0

2 /K0.
The last integral term in G is not important since it does

not depend on the lattice type, hence it produces a lattice-
independent contribution to % which is subdominant as com-
pared with %�0�. Neglecting this term, i.e., keeping only the
first term which is proportional to �uq

�0�� in the r.h.s. of Eq.
�B11� and solving Eq. �B10� we find

�%q �
1

V2a2�J �
q��0

˜

1

q�2 + u0 �
q1��0,q2��0

˜

1

q�2�%q
�0�.

Finally, on substituting %q=%q
�0�+

�ug

q2a2 +�%q and u=u�0�+�u in
Eq. �B3� we get

Fnloc �
c0

2V�J +
1

V2a2�J2 �
q�0



1

q2 + u0�2J + u0�

� �
q1�0,q2�0



1

q2�� , �B12�

where q2=q1
2+q2

2.
The second term in curly brackets corresponds to Fnloc

�8�

considered in Appendix A. Invoking the argument outlined at
the end of Appendix A one can show that the lattice depen-

dent part of Fnloc
�8� must be proportional to �˜q1�0,q2�0

1
q2 , which

therefore must replace �˜q�0
1
q2 in the J2 term. Thus modified

Fnloc
�8� reads �the lattice-independent terms are omitted�

Fnloc
�8� �

c0

2V

1

V2a2 �J + u0�2 �
q1�0,q2�0



1

q2 . �B13�
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Let us consider an example: Each droplet is characterized
by a well-defined internal primary structure: ��0��r�= ��̃�r�
+ �̄�H�Rd−r�, where �̃�r� is a periodic function with the pe-
riod ��Rd , ��̃�=0,H�·� is the Heaviside function. Then J
��1Vd

2, u0���̄Vd�2 /K0, where �1 is defined in Appendix A
��1= 2

c0
times the nonlocal energy density of the bulk primary

structure �̃�r��, and Vd= 4	
3 Rd

3 is the droplet volume. There-
fore in this case

Fnloc
�8� �

c0

2V

Vd
4

V2a2 ��1 + �̄2/K0�2 �
q1�0,q2�0

˜

1

q2 .

The same result can be easily obtained using Eq. �A10� de-
rived in Appendix A.

If the droplets are arranged in a simple cubic lattice, then
the general result Eq. �B13� can be simplified as

Fnloc
�8� �

c0

2V

1

�2	�2V4/3a2 �J + u0�2�S6 − 2S3� , �B14�

where

S6 = �
n�Z6

˜

1

n2 , S3 = �
n�Z3

˜

1

n2 .

Z6 is the space of all six-dimensional vectors with integer
components, Z3 is the same in three dimensions, and n=0 is
excluded from both sums. For the simple cubic lattice these
constants are �14�

S3 � − 8.913 633, S6 � − 3.379 685.

The same approach also works for other superstructures: Eq.
�B14� stays generally valid, but the constants S6 and S3 de-
pend on the superlattice. Their values for the most important
lattices are: S3�−9.074 369,S6�−3.834 713 for body-
centered cubic lattice �bcc�; S3�−9.073 806,
S6�−3.838 360 for face-centered cubic �fcc�; S3�
−9.073 446,S6�−3.837 621 for hexagonal closed packed
�hcp�. With this values it is obvious that the lowest Fnloc
always corresponds to the fcc lattice since J�0 and u0�0.

For weak composition contrast A�A* ,J is much smaller
than u0, so the lattice dependent part of the free energy be-
comes

Fnloc
�8� �

c0

2V

u0
2

�2	�2V4/3a2 �S6 − 2S3�

in agreement with the results obtained in Ref. �14� in this
weak regime. On the other hand, J becomes much larger than
u0 if A is close to A*. In the latter regime the micelle inter-
action energy is proportional to J2�

1
�1−A/A*�2 , i.e., to the

square of the nonlocal self-energy per micelle.
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